White paper drafted under the European Markets in Crypto-Assets Regulation (EU) 2023/1114 for FFG 2FX0H8T88

Preamble

00. Table of Contents

01. Date of notification11
02. Statement in accordance with Article 6(3) of egular ۾ (EU) 2023/111411
03. Compliance statement in accordance with Article 6(6) of Regulation (EU) 2023/1114
04. Statement in accordance with Asicle 6(5), points (a), (b), (c), of Regulation (EU) 2023/111411 05. Statement in accordance with Article 6(5), point (d), of Regulation (EU) 2023/111411
06. Statement in accordance with Article 6(5), points (e) and (f), of Regulation (EU)
Sum Pary 12
07. Warning in accordance with Article 6(7), second subparagraph, of Regulation (EU)
08. Characteristics of the crypto-asset12
09. Information about the quality and quantity of goods or services to which the utility tokens give access and restrictions on the transferability13
10. Key information about the offer to the public or admission to trading13
Part A – Information about the offeror or the person seeking admission to trading13
A.1 Name
A.2 Legal form13
A.3 Registered address13
A.4 Head office14
A.5 Registration date14

FFG: 2FX0H8T88 - 2025-08-28

2

A.6 Legal entity identifier	14
A.7 Another identifier required pursuant to applicable national law	14
A.8 Contact telephone number	14
A.9 E-mail address	14
A.10 Response time (Days)	14
A.11 Parent company	14
A.12 Members of the management body	
A.13 Business activity	14
A.14 Parent company usines pactivity	15
A.15 Newly esta lishe	15
A.16 ecial rond tion for the past three years	15
A 7 Financial condition since registration	15
Part B – Information about the issuer, if different from the offeror or pe	
admission to trading	16
B.1 Issuer different from offeror or person seeking admission to trading	16
B.2 Name	16
B.3 Legal form	16
B.4. Registered address	16
B.5 Head office	16
B.6 Registration date	16
B.7 Legal entity identifier	16
B.8 Another identifier required pursuant to applicable national law	16
B.9 Parent company	16
B.10 Members of the management body	17
B.11 Business activity	17

B.12 Parent company business activity	17
Part C – Information about the operator of the trading platform in case	es where it draws
up the crypto-asset white paper and information about other pers	ons drawing the
crypto-asset white paper pursuant to Article 6(1), second subparagra	
(EU) 2023/1114	
	17
C.2 Legal form	17
C.3 Registered address	17
C.4 Head office	17
C.5 Registration of e	18
C.6 Legal entity io optifier	18
C/ Anothe ide ther required pursuant to applicable national law	18
C.a Parent Company	18
C.9 Reason for crypto-Asset white paper Preparation	18
C.10 Members of the Management body	18
C.11 Operator business activity	18
C.12 Parent company business activity	18
C.13 Other persons drawing up the crypto-asset white paper accord	ing to Article 6(1),
second subparagraph, of Regulation (EU) 2023/1114	18
C.14 Reason for drawing the white paper by persons referred to in A	rticle 6(1), second
subparagraph, of Regulation (EU) 2023/1114	18
Part D – Information about the crypto-asset project	19
D.1 Crypto-asset project name	19
D.2 Crypto-assets name	19
D 3 Abbreviation	19

D.4 Crypto-asset project description	19
D.5 Details of all natural or legal persons involved in the implementation of t	he crypto-
asset project	19
D.6 Utility Token Classification	20
D.7 Key Features of Goods/Services for Utility oken rojects	20
D.8 Plans for the token	20
D.9 Resource allocation	21
D.10 Planned use of Collecte funds or crypto-Assets	21
Part E – Information about the offer to the public of crypto-assets or their add	
rading	21
E.1 Public offering a cadmission to trading	21
E. Reason, for public offer or admission to trading	22
E.3 undrasing target	22
E.4 Minimum subscription goals	22
E.5 Maximum subscription goals	22
E.6 Oversubscription acceptance	22
E.7 Oversubscription allocation	22
E.8 Issue price	23
E.9 Official currency or any other crypto-assets determining the issue price	23
E.10 Subscription fee	23
E.11 Offer price determination method	23
E.12 Total number of offered/traded crypto-assets	23
E.13 Targeted holders	23
E.14 Holder restrictions	
F 15 Raimhursamant notica	2/

E.16 Refund mechanism	24
E.17 Refund timeline	24
E.18 Offer phases	24
E.19 Early purchase discount	24
E.20 Time-limited offer	24
E.21 Subscription period beginning	24
E.22 Subscription period end	24
E.23 Safeguarding arrangement for Sifered funds/crypto- Assets	25
E.24 Payment mythod for cry to-asset purchase	25
E.25 Value transfer my thods for reimbursement	25
E.26 % of Nithdrawal	25
E 7 Transfe of purchased crypto-assets	25
E.28 Transfer time schedule	25
E.29 Purchaser's technical requirements	25
E.30 Crypto-asset service provider (CASP) name	25
E.31 CASP identifier	26
E.32 Placement form	26
E.33 Trading platforms name	26
E.34 Trading platforms Market identifier code (MIC)	26
E.35 Trading platforms access	26
E.36 Involved costs	26
E.37 Offer expenses	26
E.38 Conflicts of interest	26
E.39 Applicable law	26

	E.40 Competent court	27
Ρ	art F – Information about the crypto-assets	27
	F.1 Crypto-asset type	27
	F.2 Crypto-asset functionality	27
	F.3 Planned application of functionalities	28
	A description of the characteristics of he cryoto asset, including the data neces	sary
	for classification of the crypto-asset white paper in the register referred to in Ar	
	109 of Regulation (EU) 2023/ 11/2 specified in accordance with paragraph 8 of	that
	Article	28
	F.4 Type of crypto sse, white paper	28
	F.5 The type of sul mission	28
	F. Crypto ssect aracteristics	28
	F. Comme cial name or trading name	28
	F.8 Website of the issuer	28
	F.9 Starting date of offer to the public or admission to trading	28
	F.10 Publication date	28
	F.11 Any other services provided by the issuer	29
	F.12 Language or languages of the crypto-asset white paper	29
	F.13 Digital token identifier code used to uniquely identify the crypto-asset or each	h of
	the several crypto assets to which the white paper relates, where available	29
	F.14 Functionally fungible group digital token identifier, where available	29
	F.15 Voluntary data flag	29
	F.16 Personal data flag	29
	F.17 LEI eligibility	29
	F.18 Home Member State	29

F.19 Host Member States	29
Part G – Information on the rights and obligations attached to the crypto-assets	30
G.1 Purchaser rights and obligations	30
G.2 Exercise of rights and obligations	30
G.3 Conditions for modifications of rights and abligations	30
G.4 Future public offers	30
G.5 Issuer retained crypto-assets	30
G.6 Utility token classific tion	31
G.7 Key features of golds/self ses of utility tokens	31
G.8 Utility token, reducartion	31
G.9d.on radii g request	31
G 10 Crypto assets purchase or sale modalities	31
G.11 Crypto-assets transfer restrictions	31
G.12 Supply adjustment protocols	32
G.13 Supply adjustment mechanisms	32
G.14 Token value protection schemes	32
G.15 Token value protection schemes description	32
G.16 Compensation schemes	32
G.17 Compensation schemes description	32
G.18 Applicable law	32
G.19 Competent court	32
Part H – information on the underlying technology	33
H.1 Distributed ledger technology (DTL)	33
H.2 Protocols and technical standards	33

	H.3 Technology used	34
	H.4 Consensus mechanism	34
	H.5 Incentive mechanisms and applicable fees	37
	H.6 Use of distributed ledger technology	
	H.7 DLT functionality description	38
	H.8 Audit	
	H.9 Audit outcome	39
Pá	art I – Information on risk	39
	I.1 Offer-related risks	39
	I.2 Issuer-related risks	41
	I.3 C , p. ass ts-related risks	42
	I. Project in plementation-related risks	
	I.5 Technology-related risks	47
	I.6 Mitigation measures	48
Pá	art J – Information on the sustainability indicators in relation to adverse impact on	the
cli	mate and other environment-related adverse impacts	49
	J.1 Adverse impacts on climate and other environment-related adverse impacts	49
	S.1 Name	49
	S.2 Relevant legal entity identifier	49
	S.3 Name of the cryptoasset	49
	S.4 Consensus Mechanism	49
	S.5 Incentive Mechanisms and Applicable Fees	51
	S.6 Beginning of the period to which the disclosure relates	53
	S.7 End of the period to which the disclosure relates	53
	S.8 Energy consumption	53

S.9 Energy consumption sources and methodologies	53
S.10 Renewable energy consumption	53
S.11 Energy intensity	54
S.12 Scope 1 DLT GHG emissions – Controlled	54
S.13 Scope 2 DLT GHG emissions – Purchased	54
S.14 GHG intensity	54
S.15 Key energy sources and method logies	54
S.16 Key GHG sources and methodologies	54

01. Date of notification

2025-08-28

02. Statement in accordance with AP cle 6(3) of Regulation (EU) 2023/1114

This crypto-asset white paper has not been approved by any competent authority in any Member State of the European Union. The person seeking admission to trading of the crypto-asset is solely responsible for the content of this crypto-asset white paper.

03. Compliance statement in accordance with Article 6(6) of Regulation (EU 2027/1114

This type case while paper complies with Title II of Regulation (EU) 2023/1114 of the European Parament and of the Council and, to the best of the knowledge of the management body, the information presented in the crypto-asset white paper is fair, clear and not misleading and the crypto-asset white paper makes no omission likely to affect its import.

04. Statement in accordance with Article 6(5), points (a), (b), (c), of Regulation (EU) 2023/1114

The crypto-asset referred to in this crypto-asset white paper may lose its value in part or in full, may not always be transferable and may not be liquid.

05. Statement in accordance with Article 6(5), point (d), of Regulation (EU) 2023/1114

Since the token has multiple functions (hybrid token), these are already conceptually not utility tokens within the meaning of the MiCAR within the definition of Article 3, 1. (9), due to the necessity "exclusively" being intended to provide access to a good or a service supplied by its issuer only.

06. Statement in accordance with Article 6(5), points (e) and (f), of Regulation (EU) 2023/1114

The crypto-asset referred to in this white paper is not covered by the investor compensation schemes under Directive 97/9/EC of the European Parliament and of the Council or the deposit guarantee schemes under Council 2014/49/EU of the European Parliament and of the Council.

Summary

07. Warning in accurance with Article 6(7), second subparagraph, (Rigulation (EU) 2023/1114

Warning: This sumicary should be read as an introduction to the crypto-asset white paper the cospective holder should base any decision to purchase this crypto-asset on the content of the crypto-asset white paper as a whole and not on the summary alone. The orfer to the public of this crypto-asset does not constitute an offer or solicitation to purchase financial instruments and any such offer or solicitation can be made only by means of a prospectus or other offer documents pursuant to the applicable national law. This crypto-asset white paper does not constitute a prospectus as referred to in Regulation (EU) 2017/1129 of the European Parliament and of the Council or any other offer document pursuant to union or national law.

08. Characteristics of the crypto-asset

The MPLX tokens referred to in this white paper are crypto-assets other than EMTs and ARTs, and are issued on the Solana network (2025-08-25 and according to DTI FFG shown in F.14).

The first activity on Solana can be detected on 2022-09-26 (see https://solscan.io/tx/4kokWAVxZupgPWtpFdhoAGEgEm1AmgHfnc6ytU8GE4EDnfrN9oEE RkQj8kj7Q7HPF8c9YJwWoDgGRRZUG1NYMioc, accessed 2025-08-25).

09. Information about the quality and quantity of goods or services to which the utility tokens give access and restrictions on the transferability

Not applicable.

10. Key information about the offer of the public or admission to trading

Crypto Risk Metrics GmbH is seeling achiesion to trading on any Crypto Asset Service Provider platform in the Exoptan JnT in accordance to Article 5 of REGULATION (EU) 2023/1114 OF THE EURO PEAN PARLIAMENT AND OF THE COUNCIL of 31 May 2023 on markets in crypto-actes, and amending Regulations (EU) No 1093/2010 and (EU) No 1095/2010 and Directive 2013/36/EU and (EU) 2019/1937. In accordance to Article 5(4), this explorasse white paper may be used by entities admitting the token to trading after Crypto Risk Metrics GmbH as the person responsible for drawing up such white paper has given its consent to its use in writing to the repective Crypto Asset Service Provider. If a CASP wishes to use this white paper, inquiries can be made under info@crypto-risk-metrics.com.

Part A – Information about the offeror or the person seeking admission to trading

A.1 Name

Crypto Risk Metrics GmbH

A.2 Legal form

2HBR

A.3 Registered address

DE, Lange Reihe 73, 20099 Hamburg, Germany

A.4 Head office

Not applicable.

A.5 Registration date

2018-12-10

A.6 Legal entity identifier

39120077M9TG0O1FE249

A.7 Another identifier required pursuint templicable national law

Crypto Risk Metrics GmbH regater d with the commercial register in the the city of Hamburg, German's under number HRB 154488.

A.8 Contact telephole number

+4917 445 412

A.9 mail add ess

info@crypto-risk-metrics.com

A.10 Response time (Days)

030

A.11 Parent company

Not applicable.

A.12 Members of the management body

Name	Position	Address
Tim Zölitz	Chairman	Lange Reihe 73, 20099 Hamburg, Germany

A.13 Business activity

Crypto Risk Metrics GmbH is a technical service provider, who supports regulated entities in the fulfillment of their regulatory requirements. In this regard, Crypto Risk

CRYPTO RISK METRICS

Metrics GmbH acts as a data-provider for ESG-data according to article 66 (5). Due to

the regulations laid out in article 5 (4) of the REGULATION (EU) 2023/1114 OF THE

EUROPEAN PARLIAMENT AND OF THE COUNCIL of 31 May 2023 on markets in crypto-

assets, and amending Regulations (EU) No 1093/2010 and (EU) No 1095/2010 and

Directives 2013/36/EU and (EU) 2019/1937, Crypto Risk Metrics GmbH aims at providing

central services for crypto-asset white papers of order to minimize market confusion

due to conflicting white papers for the sag

A.14 Parent company business activity

Not applicable.

A.15 Newly established

Crypto Risk Metrics GN 5H, has been etablished since 2018 and is therefore not newly

established (i. older han three years).

A.1 Financial pndition for the past three years

Metrics GmbH's profit after tax for the last three financial years are as

follows:

2024 (unaudited): negative 50.891,81 EUR

2023 (unaudited): negative 27.665,32 EUR

2022: 104.283,00 EUR.

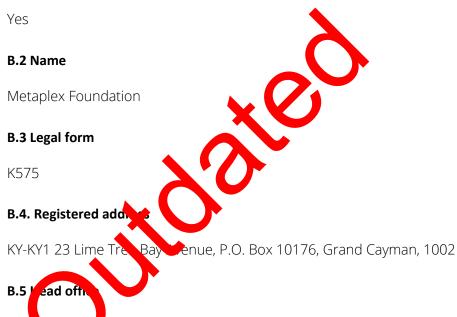
As 2023 and 2024 were the years building Software for the MiCAR-Regulation which was

not yet in place, revenue streams from these investments are expeted to be generated

in 2025.

A.17 Financial condition since registration

This point would only be applicable if the company were newly established and the


financial conditions for the past three years had not been provided in the bulletpoint

before.

Part B – Information about the issuer, if different from the offeror or person seeking admission to trading

B.1 Issuer different from offeror or person seeking admission to trading

KY-k 123 Ling Tree Bay Avenue, P.O. Box 10176, Grand Cayman, 1002

B.6 Registration date

The exact legal date of establishment of the Metaplex Foundation cannot be independently determined from publicly available information. However, multiple independent sources indicate that the project was founded in the first half of 2021, with reports of operational activity and the launch of core protocol components taking place during this period. E.g.: https://pitchbook.com/profiles/company/470721-25 or https://www.metaplex.com/blog/articles/metaplex-1h-25-recap.

B.7 Legal entity identifier

Not applicable.

B.8 Another identifier required pursuant to applicable national law

Not applicable.

B.9 Parent company

Could not be found while drafting this white paper (2025-08-25).

B.10 Members of the management body

Name	Function	Business address
Stephen Hess	Director	KY-KY1 23 Lime Tree Bay Avenue, P.O. Box 10176,
		Grand Cayman, 1002

B.11 Business activity

According to external sources (haps://schacompass.com/projects/metaple, accessed 2025-08-28), the Metaple Four atil in operates as a non-profit entity tasked with supporting and governing the Nataplex protocol and its ecosystem.

B.12 Parent company business activity

Not applicable.

Part ormation about the operator of the trading platform in cases where it draws up the crypto-asset white paper and information about other persons drawing the crypto-asset white paper pursuant to Article 6(1), second subparagraph, of Regulation (EU) 2023/1114

C.1 Name

Not applicable.

C.2 Legal form

Not applicable.

C.3 Registered address

Not applicable.

C.4 Head office

Not applicable.

Not applicable.

C.5 Registration date Not applicable. C.6 Legal entity identifier Not applicable. C.7 Another identifier required pursuant to applicable national law Not applicable. **C.8 Parent company** Not applicable. C.9 Reason for crypt white paper Preparation Not applicable. C.10 Member. of the Management body plicabl Not a **C.11 Operator business activity** Not applicable. C.12 Parent company business activity Not applicable. C.13 Other persons drawing up the crypto-asset white paper according to Article 6(1), second subparagraph, of Regulation (EU) 2023/1114 Not applicable. C.14 Reason for drawing the white paper by persons referred to in Article 6(1), second subparagraph, of Regulation (EU) 2023/1114

Part D – Information about the crypto-asset project

D.1 Crypto-asset project name

Long Name: Metaplex, Short Name: MPLX according to the Digital Token Identifier Foundation (www.dtif.org, DTI see F.13, FFG DTI See F.14 as of 2025-08-27).

D.2 Crypto-assets name

See F.13.

D.3 Abbreviation

See F.13.

D.4 Crypto-asset preset description

The Metaplex project is seended to provide an open protocol infrastructure on the Solana ottakcham, with the aim of enabling the creation, management, and transfer of digital assets. Is framework is designed to standardize metadata attachment to tokens and to facilitate the issuance of fungible, non-fungible, and programmable token formats. Development tools such as minting and auction programs are intended to support applications that may include marketplaces and other digital asset use cases. Governance is formally attributed to the Metaplex Foundation, a non-profit entity established to oversee the protocol, with certain decisions envisaged to be coordinated through a decentralized autonomous organization (DAO). The project documentation and third-party reports suggest wide adoption within the Solana ecosystem; however, the scope, timing, and effectiveness of these intended functionalities cannot be independently verified and may evolve over time.

D.5 Details of all natural or legal persons involved in the implementation of the cryptoasset project

Name	Function	Business address
Stephen Hess	Director of the Issuer	KY-KY1 23 Lime Tree Bay Avenue, P.O. Box 10176,

		Grand Cayman, 1002
Nhan Phan	CTO of Metaplex	N.a.
Adam Minsky	CFO of Metaplex	N.a.
Brian Grace	General Countel Metaplex	N.a.
Jordan Prince	Head on Product at Matable Studios	N.a.
Bartosz Lipinski	Head of Engineering at Metaplex Studios	N.a.
Others	Several companies are listed on the official website, whose exact role (e.g. investors or supporters) can't be verified independently	N.a.

D.6 Utility Token Classification

The token does not classify as a utility token.

D.7 Key Features of Goods/Services for Utility Token Projects

Not applicable.

D.8 Plans for the token

While drafting this white paper (2025-08-26), a formal roadmap for the MPLX token has not been published in public communications; however, the project's documentation (https://whitepaper.metaplex.com/whitepaper.pdf, accessed 2025-08-28) includes conceptual guidance on the intended development trajectory - encompassing governance, utility, and treasury usage.

D.9 Resource allocation

No allocation plan, vesting mechanism, or tranche-based schedule has been disclosed by the issuer. There are third party sources (https://www.rootdata.com/Projects/detail/Metaplex?k=MjYyNA%3D%3D, accessed 2025-08-26) which describe the distribution as follows:

Approximately 21.9 % is allocated to creators and parly supporters, while around 16 % is assigned to the Metaplex DAO. The Metaplex Foundation itself is intended to hold about 20.31 %, and a further 10.2 % is reserved for a strategic round. In addition, 10 % is allocated to Everstake, 975 % is attributed to Metaplex Studios, 5.4% to Community Airdrop, 3.34% to Founding Adviser and 3.1% to Founding Partners.

Note that this information and be independently verified and is subject to change.

Any modification managedively impact the investor at any time.

The temporary token distribution can be traced on-chain: http://solscar.io/token/METAewgxyPbgwsseH8T16a39CQ5VyVxZi9zXiDPY18m#holders

The investor must be aware that a public address cannot necessarily be assigned to a single person or entity, which limits the ability to determine exact economic influence or future actions. Token distribution changes can negatively impact the investor.

D.10 Planned use of Collected funds or crypto-Assets

Not applicable, as this white paper was drawn up for the admission to trading and not for collecting funds for the crypto-asset-project.

Part E – Information about the offer to the public of crypto-assets or their admission to trading

E.1 Public offering or admission to trading

The white paper concerns the admission to trading (i. e. ATTR) on any Crypto Asset Service Providers platform that has obtained the written consent of Crypto Risk Metrics GmbH as the person drafting this white paper.

E.2 Reasons for public offer or admission to trading

As already stated in A.13, Crypto Risk Metrics GmbH aims to provide central services to draw up crypto-asset white papers in accordance to COMMISSION IMPLEMENTING REGULATION (EU) 2024/2984. These services are offered in order to minimize market confusion due to conflicting white papers for the time asset drawn up from different Crypto Asset Service Providers. As of now, such a signario seems highly likely as a Crypto Asset Service Provider who drew up a synto-asset white paper and admitted the respective token in the Union has accincential to give his written consent to another Crypto Asset Service Provider according to Article 5 (4 b) of the REGULATION (EU) 2023/1114 to use the wave paper for his regulatory obligations, as this would 1. strengthen the market positioning of the other Crypto Asset Service Provider (who is most likely a competite Nana 2, also entail liability risks.

E.3 Fundamising arget

Not applicable as this white paper is written to support admission to trading and not for the included to the public.

E.4 Minimum subscription goals

Not applicable, as this white paper is written to support admission to trading and not for the initial offer to the public.

E.5 Maximum subscription goals

Not applicable, as this white paper is written to support admission to trading and not for the initial offer to the public.

E.6 Oversubscription acceptance

Not applicable, as this white paper is written to support admission to trading and not for the initial offer to the public.

E.7 Oversubscription allocation

Not applicable, as this white paper is written to support admission to trading and not for the initial offer to the public.

E.8 Issue price

Not applicable, as this white paper is written to support admission to trading and not for the initial offer to the public.

E.9 Official currency or any other crypto-assets determining the issue price

Not applicable, as this white paper is written to upport admission to trading and not for the initial offer to the public.

E.10 Subscription fee

Not applicable, as this white parer 3 witten to support admission to trading and not for the initial offer to the public.

E.11 Offer price determination method

Once the tokin is additted to trading its price will be determined by demand (buyers) and apply (s. Vers.)

E.12 tal number of offered/traded crypto-assets

A total amount of 1,000,000,000 tokens has been minted (see token: https://solscan.io/token/METAewgxyPbgwsseH8T16a39CQ5VyVxZi9zXiDPY18m, accessed 2025-08-22. The ownership or mint authority for the token is not revoked and it is possible that the supply is still subject to arbitrary change which can negatively impact the investors at any time.

E.13 Targeted holders

ALL

E.14 Holder restrictions

The Holder restrictions are subject to the rules applicable to the Crypto Asset Service Provider as well as additional restrictions the Crypto Asset Service Providers might set in force.

E.15 Reimbursement notice

Not applicable, as this white paper is written to support admission to trading and not for the initial offer to the public.

E.16 Refund mechanism

Not applicable, as this white paper is written to upport admission to trading and not for the initial offer to the public.

E.17 Refund timeline

Not applicable, as this white parer 3 witten to support admission to trading and not for the initial offer to the public.

E.18 Offer phases

Not applicable as the white paper is written to support admission to trading and not for the initial office to expublic.

E.19 Laly purhase discount

Not applicable, as this white paper is written to support admission to trading and not for the initial offer to the public.

E.20 Time-limited offer

Not applicable, as this white paper is written to support admission to trading and not for the initial offer to the public.

E.21 Subscription period beginning

Not applicable, as this white paper is written to support admission to trading and not for the initial offer to the public.

E.22 Subscription period end

Not applicable, as this white paper is written to support admission to trading and not for the initial offer to the public.

CRYPTO RISK METRICS

E.23 Safeguarding arrangements for offered funds/crypto- Assets

Not applicable, as this white paper is written to support admission to trading and not for

the initial offer to the public.

E.24 Payment methods for crypto-asset purchase

The payment methods are subject to the respective sapabilities of the Crypto Asset

Service Provider listing the crypto-asset.

E.25 Value transfer methods for reimine eme

Not applicable, as this white parer witten to support admission to trading and not for

the initial offer to the public.

E.26 Right of withdraw

Not applicable as this white paper is written to support admission to trading and not for

the intial offecto compublic.

E.27 msfer f purchased crypto-assets

The transfer of purchased crypto-assets are subject to the respective capabilities of the

Crypto Asset Service Provider listing the crypto-asset.

E.28 Transfer time schedule

Not applicable, as this white paper is written to support admission to trading and not for

the initial offer to the public.

E.29 Purchaser's technical requirements

The technical requirements that the purchaser is required to fulfil to hold the crypto-

assets of purchased crypto-assets are subject to the respective capabilities of the

Crypto Asset Service Provider listing the crypto-asset.

E.30 Crypto-asset service provider (CASP) name

Not applicable.

E.31 CASP identifier

Not applicable.

E.32 Placement form

Not applicable.

E.33 Trading platforms name

The trading on all MiCAR-compliant radir ratio ms is sought.

E.34 Trading platforms Market ider cold (MIC)

Not applicable.

E.35 Trading platfor access

This depends on the trading platform listing the asset.

E.36 involved osts

This pends in the trading platform listing the asset. Furthermore, costs may occur for making transfers out of the platform (i. e. "gas costs" for blockchain network use that may exceed the value of the crypto-asset itself).

E.37 Offer expenses

Not applicable, as this crypto-asset white paper concerns the admission to trading and not the offer of the token to the public.

E.38 Conflicts of interest

MiCAR-compliant Crypto Asset Service Providers shall have strong measurements in place in order to manage conflicts of interests. Due to the broad audience this white-paper is adressing, potential investors should always check the conflicts of Interest policy of their respective counterparty.

E.39 Applicable law

Not applicable, as it is referred to on "offer to the public" and in this white-paper, the admission to trading is sought.

E.40 Competent court

Not applicable, as it is referred to on "offer to the public" and in this white-paper, the admission to trading is sought.

Part F – Information about the cryptosets

F.1 Crypto-asset type

The crypto-asset described in the wave poser of classified as a crypto-asset under the Markets in Crypto-Assets Regulation (MCCAR) but does not qualify as an electronic money token (EMT) or an asset-rate finded token (ART). It is a digital representation of value that can be stored and transferred using distributed ledger technology (DLT) or similar technology, without canoodying or conferring any rights to its holder.

The asset dot not all to maintain a stable value by referencing an official currency, a basiet of assets, or any other underlying rights. Instead, its valuation is entirely market-driver based on supply and demand dynamics, and not supported by a stabilization mechanism. It is neither pegged to any fiat currency nor backed by any external assets, distinguishing it clearly from EMTs and ARTs.

Furthermore, the crypto-asset is not categorized as a financial instrument, deposit, insurance product, pension product, or any other regulated financial product under EU law. It does not grant financial rights, voting rights, or any contractual claims to its holders, ensuring that it remains outside the scope of regulatory frameworks applicable to traditional financial instruments.

F.2 Crypto-asset functionality

The MPLX token is intended to serve as the governance instrument within the Metaplex ecosystem. Token holders may participate in decision-making processes coordinated through the Metaplex DAO, including votes on protocol upgrades, allocation of ecosystem grants, and the management of treasury resources. In addition, project documentation describes that a portion of protocol revenues may be directed toward token buybacks, which are then allocated to the DAO. Beyond these intended governance and treasury functions, no other verifiable or binding functionalities of the

token can be independently confirmed, and the scope or continuation of such mechanisms may be subject to change.

F.3 Planned application of functionalities

See D.8.

A description of the characteristics of the typto asset, including the data necessary for classification of the crypto-asset white paper in the register referred to in Artist 114 of Regulation (EU) 2023/1114, as specified in accordance with pararraph 8 of that Article

F.4 Type of crypto-asset white pap

The white paper types "ther gypto-assets" (i. e. "OTHR").

F.5 The type of subm. sion

The white paper semission type is "NEWT", which stands for new token.

F.6 Chato-as et characteristics

The tokens are crypto-assets other than EMTs and ARTs, which are available on the Solana network. The tokens are fungible (up to 6 digits after the decimal point).

F.7 Commercial name or trading name

See F.13.

F.8 Website of the issuer

https://www.metaplex.com/

F.9 Starting date of offer to the public or admission to trading

2025-09-25

F.10 Publication date

2025-09-25

F.11 Any other services provided by the issuer

It is not possible to exclude a possibility that the issuer of the token provides or will provide other services not covered by Regulation (EU) 2023/1114 (i.e. MiCAR).

F.12 Language or languages of the crypto-asset when paper

ΕN

F.13 Digital token identifier code used to migrely identify the crypto-asset or each of the several crypto assets to which the what paper nates, where available

2S9ZH0BJL

F.14 Functionally fungible group ligital token identifier, where available

2FX0H8T88

F.15 Volumery ta flag

Maldatory.

F.16 Personal data flag

The white paper does contain personal data.

F.17 LEI eligibility

The issuer should be eligible for a Legal Entity Identifier.

F.18 Home Member State

Germany

F.19 Host Member States

Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden

Part G – Information on the rights and obligations attached to the crypto-assets

G.1 Purchaser rights and obligations

There are no rights or obligations attached for/office purchaser.

G.2 Exercise of rights and obligations

As the token grants neither rights no obligations, there are no procedures and conditions for the exercise of these rights applicable.

G.3 Conditions for modifications of 1gh pand obligations

As the token grants neither rights nor obligations, there are no conditions under which the rights and obligations may be modified applicable. An adjustment of the technical infrastructure necessary to exercise the promised governance rights, declining functionality due to ciliution, changing rights within the voting platforms, and all other advices effect for investors may occur at any time.

G.4 Future public offers

Information on the future offers to the public of crypto-assets were not available at the time of writing this white paper (2025-08-15).

G.5 Issuer retained crypto-assets

No allocation plan, vesting mechanism, or tranche-based schedule has been disclosed by the issuer. There are third party sources (https://www.rootdata.com/Projects/detail/Metaplex?k=MjYyNA%3D%3D, accessed 2025-08-26) which describe the distribution as follows:

Approximately 21.9 % is allocated to creators and early supporters, while around 16 % is assigned to the Metaplex DAO. The Metaplex Foundation itself is intended to hold about 20.31 %, and a further 10.2 % is reserved for a strategic round. In addition, 10 % is allocated to Everstake, 9.75 % is attributed to Metaplex Studios, 5.4% to Community Airdrop, 3.34% to Founding Advisors and 3.1% to Founding Partners.

Note that this information cannot be independently verified and is subject to change. Any modification may negatively impact the investor at any time.

The temporary token distribution can be traced on-chain: https://solscan.io/token/METAewgxyPbgwsseH8T16a39CQ5VyVxZi9zXiDPY18m#holders

The investor must be aware that a public address cannot necessarily be assigned to a single person or entity, which limits the ability to externine exact economic influence or future actions. Token distribution changes can negatively impact the investor.

G.6 Utility token classification

No

G.7 Key features of ds/s rules of utility tokens

Not applicable

G.8 Itility tokens redemption

Not a licable

G.9 Non-trading request

The admission to trading is sought.

G.10 Crypto-assets purchase or sale modalities

Not applicable, as this white paper is written to support admission to trading and not for the initial offer to the public.

G.11 Crypto-assets transfer restrictions

The crypto-assets as such do not have any transfer restrictions and are generally freely transferable. The Crypto Asset Service Providers can impose their own restrictions in agreements they enter with their clients. The Crypto Asset Service Providers may impose restrictions to buyers and sellers in accordance with applicable laws and internal policies and terms.

CRYPTO RISK METRICS

G.12 Supply adjustment protocols

No, there are no fixed protocols that can increase or decrease the supply implemented

as of 2025-08-20. Nevertheless, it is possible that the owner of the smart-contract has

the ability to increase or decrease the token-supply in response to changes in demand.

Also, it is possible to decrease the circulating superby transferring crypto-assets to so

called "burn-adresses", which are adresses that hader the crypto-asset "non-

transferable" after sent to those adresses

G.13 Supply adjustment mechanisms

The mint authority (the entry who can beate new tokens of that crypto-asset), as stated

in the smart contract, hat the setential right to change the supply of the crypto-assets.

Investors should note hat changes in the token supply can have a significant negative

impact.

G.1 Token value protection schemes

No, the does not have value protection schemes.

G.15 Token value protection schemes description

Not applicable.

G.16 Compensation schemes

No, the token does not have compensation schemes.

G.17 Compensation schemes description

Not applicable.

G.18 Applicable law

Applicable law likely depends on the location of any particular transaction with the

token.

G.19 Competent court

Competent court likely depends on the location of any particular transaction with the

token.

FFG: 2FX0H8T88 - 2025-08-28

32

Part H - information on the underlying technology

H.1 Distributed ledger technology (DTL)

See F.13.

H.2 Protocols and technical standards

The tokens were created with Solana's Token Plagram's smart contract that is part of the Solana Program Library (SPL). Such take a size commonly referred to as SPL-token. The token itself is not an additional smart contract, but what is called a data account on Solana. As the name suggests data accounts store data on the blockchain. However, unlike smart contracts, the sandat be executed and cannot perform any operations. Since one cannot interact with that accounts directly, any interaction with an SPL-token is done via Solara's Taken Program. The source code of this smart contract can be found here https://git.bb.com/solana-program/token.

The Token frogram is developed in Rust, a memory-safe, high-performance programing language designed for secure and efficient development. On Solana, Rust is said to be the primary language used for developing on-chain programs (smart contracts), intended to ensure safety and reliability in decentralized applications (dApps).

Core functions of the Token Program:

initialize_mint() → Create a new type of token, called a mint

mint_to() → Mints new tokens of a specific type to a specified account

burn() → Burns tokens from a specified account, reducing total supply

transfer() → Transfers tokens between accounts

approve() → Approves a delegate to spend tokens on behalf of the owner

set_authority() → Updates authorities (mint, freeze, or transfer authority)

These functions ensure basic operations like transfers, and minting/burning can be performed within the Solana ecosystem.

In addition to the Token Program, another smart contract, the Metaplex Token Metadata Program is commonly used to store name, symbol, and URI information for better ecosystem compatibility. This additional metadata has no effect on the token's functionality.

H.3 Technology used

- 1. Solana-Compatible Wallets: The trees responded by all wallets compatible with Solana's Token Program
- 2. Decentralized Ledger: To Sol has blockchain acts as a decentralized ledger for all token transactions with the intention to preserving an unalterable record of token transfers and own rishly to ensure both transparency and security.
- 3. SPL Comp Program! The SPL (Solana Program Library) Token Program is an inherent Solana smart contract built to create and manage new types of tokens (so called mints). This is significantly different from ERC-20 on Ethereum, because a single smart contract that is part of Solana's core functionality and as such is open source, is responsible for all the tokens. This ensures a high uniformity across tokens at the cost of flexibility.
- 4. Blockchain Scalability: With its intended capacity for processing a lot of transactions per second and in most cases low fees, Solana is intended to enable efficient token transactions, maintaining high performance even during peak network usage.

Security Protocols for Asset Custody and Transactions:

- 1. Private Key Management: To safeguard their token holdings, users must securely store their wallet's private keys and recovery phrases.
- 2. Cryptographic Integrity: Solana employs elliptic curve cryptography to validate and execute transactions securely, intended to ensure the integrity of all transfers.

H.4 Consensus mechanism

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS). The core concepts of the mechanism are intended to work as follows:

CRYPTO RISK METRICS

Core Concepts

1. Proof of History (PoH):

Time-Stamped Transactions: PoH is a cryptographic technique that timestamps

transactions, intended to creating a historical cord that proves that an event has

occurred at a specific moment in time.

Verifiable Delay Function: PoH uses a Verifically Delay Function (VDF) to generate a

unique hash that includes the transation and the time it was processed. This sequence

of hashes provides a verifiable or or others, intended to enabling the network to

efficiently agree on the sequence of transactions.

2. Proof of Stake (PS)

Validator Selection. Validators are chosen to produce new blocks based on the number

of SOLLOW staked. The more tokens staked, the higher the chance of being

selected to vallate transactions and produce new blocks.

Delegation: Token holders can delegate their SOL tokens to validators, earning rewards

proportional to their stake while intended to enhancing the network's security.

Consensus Process

1. Transaction Validation:

Transactions are broadcasted to the network and collected by validators. Each

transaction is validated to ensure it meets the network's criteria, such as having correct

signatures and sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp

and the previous hash. This process creates a historical record of transactions,

establishing a

cryptographic clock for the network.

3. Block Production:

CRYPTO RISK METRICS

The network uses PoS to select a leader validator based on their stake. The leader is

responsible for bundling the validated transactions into a block. The leader validator

uses the PoH sequence to order transactions within the block, ensuring that all

transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced validator. They check the

correctness of the PoH sequence wave te the transactions within the block. Once

the block is verified, it is added to the block hain. Validators sign off on the block, and it

is considered finalized.

Security and Economic Incentive

1. Incentives for Widate's:

Block rewards. Validators earn rewards for producing and validating blocks. These

rewards are detributed in SOL tokens and are proportional to the validator's stake and

performance

Transaction Fees: Validators also earn transaction fees from the transactions included in

the blocks they produce. These fees provide an additional incentive for validators to

process transactions efficiently.

2. Security:

Staking: Validators must stake SOL tokens to participate in the consensus process. This

staking acts as collateral, incentivizing validators to act honestly. If a validator behaves

maliciously or fails to perform, they risk losing their staked tokens.

Delegated Staking: Token holders can delegate their SOL tokens to validators, intended

to enhance network security and decentralization. Delegators share in the rewards and

are incentivized to choose reliable validators.

3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or

producing invalid blocks. This penalty, known as slashing, results in the loss of a portion

of the staked tokens, discouraging dishonest actions.

H.5 Incentive mechanisms and applicable fees

1. Validators:

Staking Rewards: Validators are chosen best in the number of SOL tokens they have

staked. They earn rewards for producing and wildating blocks, which are distributed in

SOL. The more tokens staked are high the chances of being selected to validate

transactions and produce w blocks,

Transaction Fees: Walkers early a portion of the transaction fees paid by users for the

transactions they clue in the blocks. This is intended to provide an additional financial

incentive for lidato to process transactions efficiently and maintain the network's

interrity.

2. Del sator

Delegated Staking: Token holders who do not wish to run a validator node can delegate

their SOL tokens to a validator. In return, delegators share the rewards earned by the

validators. This is intended to encourage widespread participation in securing the

network and ensures decentralization.

3. Economic Security:

Slashing: Validators can be penalized for malicious behavior, such as producing invalid

blocks or being frequently offline. This penalty, known as slashing, involves the loss of a

portion of their staked tokens. Slashing is intended to deter dishonest actions and

ensures that validators act in the best interest of the network.

Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens,

which could otherwise be used or sold. This opportunity cost is intended to incentivize

participants to act honestly to earn rewards and avoid penalties.

Fees Applicable on the Solana Blockchain

1. Transaction Fees:

Solana is designed to handle a high throughput of transactions, which is intended to

keep the fees low and predictable.

Fee Structure: Fees are paid in SOL and are the to compensate validators for the

resources they expend to process transactions this includes computational power and

network bandwidth.

2. Rent Fees:

State Storage: Solana charges of cantal ""rent fees"" for storing data on the blockchain.

These fees are designed iscourage inefficient use of state storage and encourage

developers to clearly nuser state. Rent fees are intended to help maintain the

efficiency and performation of the network.

3. Smart track Fees:

Execution Cogs: Similar to transaction fees, fees for deploying and interacting with

smart contracts on Solana are based on the computational resources required. This is

intended to ensure that users are charged proportionally for the resources they

consume.

H.6 Use of distributed ledger technology

No, DLT not operated by the issuer, offeror, a person seeking admission to trading or a

third-party acting on the issuer's their behalf.

H.7 DLT functionality description

Not applicable.

H.8 Audit

As we are understanding the question relating to "technology" to be interpreted in a

broad sense, the answer answer to whether an audit of "the technology used" was

conducted is "no, we can not guarantee, that all parts of the technology used have been

audited". This is due to the fact this report focusses on risk, and we can not guarantee

that each part of the technology used was audited.

FFG: 2FX0H8T88 - 2025-08-28

38

H.9 Audit outcome

Not applicable.

Part I - Information on risks

I.1 Offer-related risks

1. Regulatory and Compliance

This white paper (drawn up from 202x 08-16, has been prepared with utmost caution; however, uncertainties in the regulatory requirements and future changes in regulatory frameworks could potential him let the token's legal status and its tradability. There is also a high probability that other laws will come into force, changing the rules for the trading of the token. Therefore, such developments shall be monitored and acted upon accordingly.

2. Cherational and Technical

Blockchain Dependency: The token is entirely dependent on the blockchain the crypto-asset is issued upon (as of 2025-08-16). Any issues, such as downtime, congestion, or security vulnerabilities within the blockchain, could adversely affect the token's functionality.

Smart Contract Risks: Smart contracts governing the token may contain hidden vulnerabilities or bugs that could disrupt the token offering or distribution processes.

Connection Dependency: As the trading of the token also involves other trading venues, technical risks such as downtime of the connection or faulty code are also possible.

Human errors: Due to the irrevocability of blockchain-transactions, approving wrong transactions or using incorrect networks/addresses will most likely result in funds not being accessibly anymore.

Custodial risk: When admitting the token to trading, the risk of losing clients assets due to hacks or other malicious acts is given. This is due to the fact the token is hold in custodial wallets for the customers.

3. Market and Liquidity

Volatility: The token will most likely be subject to high volatility and market speculation.

Price fluctuations could be significant, posing a risk of substantial losses to holders.

Liquidity Risk: Liquidity is contingent upon trading activity levels on decentralized

exchanges (DEXs) and potentially on centralized exchanges (CEXs), should they be

involved. Low trading volumes may restricted by and selling capabilities of the

tokens.

4. Counterparty

As the admission to trading venues,

counterparty risks tie. These Include, but are not limited to, the following risks:

General Trading Platform sk: The risk of trading platforms not operating to the highest

stand as given. Examples like FTX show that especially in nascent industries,

compliance are oversight-frameworks might not be fully established and/or enforced.

Listing of belisting Risks: The listing or delisting of the token is subject to the trading

partners internal processes. Delisting of the token at the connected trading partners

could harm or completely halt the ability to trade the token.

5. Liquidity

Liquidity of the token can vary, especially when trading activity is limited. This could

result in high slippage when trading a token.

6. Failure of one or more Counterparties

Another risk stems from the internal operational processes of the counterparties used.

As there is no specific oversight other than the typical due diligence check, it cannot be

guaranteed that all counterparties adhere to the best market standards.

Bankruptcy Risk: Counterparties could go bankrupt, possibly resulting in a total loss for

the clients assets hold at that counterparty.

7. Information asymmetry

Different groups of participants may not have the same access to technical details or governance information, leading to uneven decision-making and potential disadvantages for less informed investors.

I.2 Issuer-related risks

1. Insolvency

As with every other commercial endeavor, the risk of insolvency of the issuer is given. This could be caused by but is not mite to bock of interest from the public, lack of funding, incapacitation of key decele person project members, force majeure (including pandemics and wars) or lack of commercial success or prospects.

2. Counterparty

In order to openite, to issuer has most likely engaged in different business relationaries with one or more third parties on which it strongly depends on. Loss or charges in the leadership or key partners of the issuer and/or the respective counterparties can lead to disruptions, loss of trust, or project failure. This could result in a total loss of economic value for the crypto-asset holders.

3. Legal and Regulatory Compliance

Cryptocurrencies and blockchain-based technologies are subject to evolving regulatory landscapes worldwide. Regulations vary across jurisdictions and may be subject to significant changes. Non-compliance can result in investigations, enforcement actions, penalties, fines, sanctions, or the prohibition of the trading of the crypto-asset impacting its viability and market acceptance. This could also result in the issuer to be subject to private litigation. The beforementioned would most likely also lead to changes with respect to trading of the crypto-asset that may negatively impact the value, legality, or functionality of the crypto-asset.

4. Operational

Failure to develop or maintain effective internal control, or any difficulties encountered in the implementation of such controls, or their improvement could harm the issuer's business, causing disruptions, financial losses, or reputational damage.

5. Industry

The issuer is and will be subject to all of the risks and uncertainties associated with a

crypto-project, where the token issued has zero intrinsic value. History has shown that

most of this projects resulted in financial losses for the investors and were only set-up

to enrich a few insiders with the money from retain estors.

6. Reputational

The issuer faces the risk of negative publicity, whether due to, without limitation,

operational failures, security beaves, Cassociation with illicit activities, which can

damage the issuer reputation and by extension, the value and acceptance of the

crypto-asset.

7. Competition

There are me bus, ther crypto-asset projects in the same realm, which could have an

effect on the dypto-asset in question.

8. Unanticipated Risk

In addition to the risks included in this section, there might be other risks that cannot be

foreseen. Additional risks may also materialize as unanticipated variations or

combinations of the risks discussed.

I.3 Crypto-assets-related risks

1. Valuation

As the crypto-asset does not have any intrinsic value, and grants neither rights nor

obligations, the only mechanism to determine the price is supply and demand.

Historically, most crypto-assets have dramatically lost value and were not a beneficial

investment for the investors. Therefore, investing in these crypto-assets poses a high

risk, and the loss of funds can occur.

2. Market Volatility

Crypto-asset prices are highly susceptible to dramatic fluctuations influence by various

factors, including market sentiment, regulatory changes, technological advancements,

and macroeconomic conditions. These fluctuations can result in significant financial

losses within short periods, making the market highly unpredictable and challenging for

investors. This is especially true for crypto-assets without any intrinsic value, and

investors should be prepared to lose the complete amount of money invested in the

respective crypto-assets.

3. Liquidity Challenges

Some crypto-assets suffer from lighted which can present difficulties when

executing large trades without significantly impacting market prices. This lack of liquidity

can lead to substantial can all os, particularly during periods of rapid market

movements, when selling a sets may become challenging or require accepting

unfavorable prices.

4. Asset Security

Cry to-assets ace unique security threats, including the risk of theft from exchanges or

digita wallets loss of private keys, and potential failures of custodial services. Since

crypto transactions are generally irreversible, a security breach or mismanagement can

result in the permanent loss of assets, emphasizing the importance of strong security

measures and practices.

5. Scams

The irrevocability of transactions executed using blockchain infrastructure, as well as the

pseudonymous nature of blockchain ecosystems, attracts scammers. Therefore,

investors in crypto-assets must proceed with a high degree of caution when investing in

if they invest in crypto-assets. Typical scams include – but are not limited to – the

creation of fake crypto-assets with the same name, phishing on social networks or by

email, fake giveaways/airdrops, identity theft, among others.

6. Blockchain Dependency

Any issues with the blockchain used, such as network downtime, congestion, or security

vulnerabilities, could disrupt the transfer, trading, or functionality of the crypto-asset.

7. Smart Contract Vulnerabilities

FFG: 2FX0H8T88 - 2025-08-28

43

The smart contract used to issue the crypto-asset could include bugs, coding errors, or vulnerabilities which could be exploited by malicious actors, potentially leading to asset loss, unauthorized data access, or unintended operational consequences.

8. Privacy Concerns

All transactions on the blockchain are permanently accorded and publicly accessible, which can potentially expose user activities. It is addresses are pseudonoymous, the transparent and immutable inture or blockchain allows for advanced forensic analysis and intelligence gathering. This well of transparency can make it possible to link blockchain addresses to hal-world de bities over time, compromising user privacy.

9. Regulatory Uncertaint

The regulatory encompet surrounding crypto-assets is constantly evolving, which can directly impact their usage, valuation, and legal status. Changes in regulatory eworks have introduce new requirements related to consumer protection, taxation, and ati-mopy laundering compliance, creating uncertainty and potential challenges for investors and businesses operating in the crypto space. Although the crypto-asset do not create or confer any contractual or other obligations on any party, certain regulators may nevertheless qualify the crypto-asset as a security or other financial instrument under their applicable law, which in turn would have drastic consequences for the crypto-asset, including the potential loss of the invested capital in the asset. Furthermore, this could lead to the sellers and its affiliates, directors, and officers being obliged to pay fines, including federal civil and criminal penalties, or make the cryptoasset illegal or impossible to use, buy, or sell in certain jurisdictions. On top of that, regulators could take action against the issuer as well as the trading platforms if the the regulators view the token as an unregistered offering of securities or the operations otherwise as a violation of existing law. Any of these outcomes would negatively affect the value and/or functionality of the crypot-asset and/or could cause a complete loss of funds of the invested money in the crypto-asset for the investor.

10. Counterparty risk

Engaging in agreements or storing crypto-assets on exchanges introduces counterparty

risks, including the failure of the other party to fulfill their obligations. Investors may face

potential losses due to factors such as insolvency, regulatory non-compliance, or

fraudulent activities by counterparties, highlighting the need for careful due diligence

when engaging with third parties.

11. Reputational concerns

Crypto-assets are often subject to could be found by stemming from associations with

illegal activities, high-profile security breaches, and technological failures. Such incidents

can undermine trust in the broad encystem, negatively affecting investor confidence

and market value, therein ninering widespread adoption and acceptance.

12. Technological Innic ation

New technologies or Natforms could render the network's design less competitive or

ever break indamental parts (i.e., quantum computing might break cryptographic

algor hms used to secure the network), impacting adoption and value. Participants

should approach the crypto-asset with a clear understanding of its speculative and

volatile nature and be prepared to accept these risks and bear potential losses, which

could include the complete loss of the asset's value.

13. Community and Narrative

As the crypto-asset has no intrinsic value, all trading activity is based on the intended

market value is heavily dependent on its community.

14. Interest Rate Change

Historically, changes in interest, foreign exchange rates, and increases in volatility have

increased credit and market risks and may also affect the value of the crypto-asset.

Although historic data does not predict the future, potential investors should be aware

that general movements in local and other factors may affect the market, and this could

also affect market sentiment and, therefore most likely also the price of the crypto-

asset.

15. Taxation

FFG: 2FX0H8T88 - 2025-08-28

45

The taxation regime that applies to the trading of the crypto-asset by individual holders

or legal entities will depend on the holder's jurisdiction. It is the holder's sole

responsibility to comply with all applicable tax laws, including, but not limited to, the

reporting and payment of income tax, wealth tax, or similar taxes arising in connection

with the appreciation and depreciation of the crypt asset.

16. Anti-Money Laundering/Counter-Terrorism Pancing

It cannot be ruled out that crypto seet wallet ddresses interacting with the crypto-

asset have been, or will be used for movey laundering or terrorist financing purposes,

or are identified with a person how have committed such offenses.

17. Market Abuse

It is noteworthy that the potentially prone to increased market abuse

risks, as the underlying infrastructure could be used to exploit arbitrage opportunities

through schenes such as front-running, spoofing, pump-and-dump, and fraud across

different systems, platforms, or geographic locations. This is especially true for crypto-

assets with a low market capitalization and few trading venues, and potential investors

should be aware that this could lead to a total loss of the funds invested in the crypto-

asset.

18. Timeline and Milestones

Critical project milestones could be delayed by technical, operational, or market

challenges.

19. Legal ownership: Depending on jurisdiction, token holders may not have

enforceable legal rights over their holdings, limiting avenues for recourse in disputes or

cases of fraud.

20. Jurisdictional blocking: Access to exchanges, wallets, or interfaces may be restricted

based on user location or regulatory measures, even if the token remains transferable

on-chain.

21. Token concentration: A large proportion of tokens held by a few actors could allow

price manipulation, governance dominance, or sudden sell-offs impacting market

stability.

22. Ecosystem incentive misalignment: If validator, developer, or user rewards become

unattractive or distorted, network security and patient could decline.

23. Governance deadlock: Poorly structure them nited governance processes may

prevent timely decisions, creating decisions.

24. Compliance misalignment: ea res delivery mechanisms may unintentionally

conflict with evolving regulations particularly regarding consumer protection or data

privacy.

I.4 Project implementation elated risks

As the poer relates to the "Admission to trading" of the crypto-asset, the

impermentation risk is referring to the risks on the Crypto Asset Service Providers side.

These on by, but are not limited to, typical project management risks, such as key-

personal-risks, timeline-risks, and technical implementation-risks.

I.5 Technology-related risks

As this white paper relates to the "Admission to trading" of the crypto-asset, the

technology-related risks mainly involve the DLT networks where the crypto asset is

issued in.

1. Blockchain Dependency Risks

Network Downtime: Potential outages or congestion on the involved blockchains could

interrupt on-chain token transfers, trading, and other functions.

2. Smart Contract Risks

Vulnerabilities: The smart contract governing the token could contain bugs or

vulnerabilities that may be exploited, affecting token distribution or vesting schedules.

3. Wallet and Storage Risks

Private Key Management: Token holders must securely manage their private keys and

recovery phrases to prevent permanent loss of access to their tokens, which includes

Trading-Venues, who are a prominent target for dedicated hacks.

Compatibility Issues: The tokens require compatible wallets for storage and transfer. Any

incompatibility or technical issues with these walked ould impact token accessibility.

4. Network Security Risks

Attack Risks: The blockchains may fact threats such as denial-of-service (DoS) attacks or

exploits targeting its consensus new anis. Which could compromise network integrity.

Centralization Concerns: Liming to be decentralized, the relatively smaller

number of validate concentration of stakes within the networks compared to other

blockchains might ose entralization risks, potentially affecting network resilience.

5. Evering school Risks: Technological Obsolescence: The fast pace of innovation in

blokchain ted nology may make the used token standard appear less competitive or

become become ated, potentially impacting the usability or adoption of the token.

6. Forking risk: Network upgrades may split the blockchain into separate versions,

potentially creating duplicate tokens or incompatibility between different versions of the

protocol.

7. Economic abstraction: Mechanisms such as gas relayers or wrapped tokens may allow

users to bypass the native asset, reducing its direct demand and weakening its

economic role.

8. Dust and spam attacks: Low-value transactions may flood the network, increasing

ledger size, reducing efficiency, and exposing user addresses to tracking.

9. Frontend dependency: If users rely on centralised web interfaces or wallets, service

outages or compromises could block access even if the blockchain itself continues to

operate.

I.6 Mitigation measures

None.

Part J – Information on the sustainability indicators in relation to adverse impact on the climate and other environment-related adverse impacts

J.1 Adverse impacts on climate and other environment-related adverse impacts

S.1 Name

Crypto Risk Metrics GmbH

S.2 Relevant legal entity identifier

39120077M9TG0O1FE24

S.3 Name of the crystoas

Metaplex

S.4 Corsens No sharism

Solara uses a combination of Proof of History (PoH) and Proof of Stake (PoS). The core concepts of the mechanism are intended to work as follows:

Core Concepts

1. Proof of History (PoH):

Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, intended to creating a historical record that proves that an event has occurred at a specific moment in time.

Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, intended to enabling the network to efficiently agree on the sequence of transactions.

2. Proof of Stake (PoS):

Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being

selected to validate transactions and produce new blocks.

Delegation: Token holders can delegate their SOL tokens to validators, earning rewards

proportional to their stake while intended to enhancing the network's security.

Consensus Process

1. Transaction Validation:

Transactions are broadcasted to the nervon and collected by validators. Each

transaction is validated to ensure it ments the network's criteria, such as having correct

signatures and sufficient funds

2. PoH Sequence Generation:

A validator generates sequence of hashes using PoH, each containing a timestamp

and the precious Neh. This process creates a historical record of transactions,

esta lishing

crypt graphic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is

responsible for bundling the validated transactions into a block. The leader validator

uses the PoH sequence to order transactions within the block, ensuring that all

transactions are processed in the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the

correctness of the PoH sequence and validate the transactions within the block. Once

the block is verified, it is added to the blockchain. Validators sign off on the block, and it

is considered finalized.

Security and Economic Incentives

1. Incentives for Validators:

Block Rewards: Validators earn rewards for producing and validating blocks. These

rewards are distributed in SOL tokens and are proportional to the validator's stake and

performance.

Transaction Fees: Validators also earn transaction fees from the transactions included in

the blocks they produce. These fees provide and ditional incentive for validators to

process transactions efficiently.

2. Security:

Staking: Validators must stake stake participate in the consensus process. This

staking acts as collateral, in centivizing validators to act honestly. If a validator behaves

maliciously or fails to perform, they risk losing their staked tokens.

Delegated Staking Toke bolders can delegate their SOL tokens to validators, intended

to enhance nework purity and decentralization. Delegators share in the rewards and

are ncentivized to choose reliable validators.

3. Eco. mic enalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or

producing invalid blocks. This penalty, known as slashing, results in the loss of a portion

of the staked tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

1. Validators:

Staking Rewards: Validators are chosen based on the number of SOL tokens they have

staked. They earn rewards for producing and validating blocks, which are distributed in

SOL. The more tokens staked, the higher the chances of being selected to validate

transactions and produce new blocks.

Transaction Fees: Validators earn a portion of the transaction fees paid by users for the

transactions they include in the blocks. This is intended to provide an additional financial

incentive for validators to process transactions efficiently and maintain the network's

integrity.

2. Delegators:

Delegated Staking: Token holders who do not wish to run a validator node can delegate

their SOL tokens to a validator. In return, delegators share the rewards earned by the

validators. This is intended to encourage widespread participation in securing the

network and ensures decentralization.

3. Economic Security:

Slashing: Validators can be penalized for validation, such as producing invalidations can be penalized for validations.

blocks or being frequently offling is pearly, known as slashing, involves the loss of a

portion of their staked to ens. Tashing is intended to deter dishonest actions and

ensures that validators att in the best interest of the network.

Opportunity Cost. by staking SOL tokens, validators and delegators lock up their tokens,

which could of erwis the used or sold. This opportunity cost is intended to incentivize

participants to act nonestly to earn rewards and avoid penalties.

Fees Applicate on the Solana Blockchain

1. Transaction Fees:

Solana is designed to handle a high throughput of transactions, which is intended to

keep the fees low and predictable.

Fee Structure: Fees are paid in SOL and are used to compensate validators for the

resources they expend to process transactions. This includes computational power and

network bandwidth.

2. Rent Fees:

State Storage: Solana charges so called ""rent fees"" for storing data on the blockchain.

These fees are designed to discourage inefficient use of state storage and encourage

developers to clean up unused state. Rent fees are intended to help maintain the

efficiency and performance of the network.

3. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with

smart contracts on Solana are based on the computational resources required. This is

intended to ensure that users are charged proportionally for the resources they

consume.

S.6 Beginning of the period to which the disclosure relies

2024-08-27

S.7 End of the period to which the dis sure relates

2025-08-27

S.8 Energy consumption

257.72792 kWh/a

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components: To deter the energy consumption of a token, the energy consumption of the network Solana is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side

when in doubt, i.e. making higher estimates for the adverse impacts.

S.10 Renewable energy consumption

32.7956468965 %

S.11 Energy intensity

0.00000 kWh

S.12 Scope 1 DLT GHG emissions - Controlled

0.00000 tCO2e/a

S.13 Scope 2 DLT GHG emissions - Purchased

0.08734 tCO2e/a

S.14 GHG intensity

0.00000 kgCO2e

S.15 Key energy sources all methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are ng public information sites, open-source crawlers and crawlers developed in-buse. If no information is available on the geographic distribution of the fence networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal energy cost wrt. one more transaction. Ember (2025); Energy Institute -Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Share of electricity generated by renewables - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review World Energy" Retrieved of [original data1. from https://ourworldindata.org/grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from

Our World in Data, see citation. The intensity is calculated as the marginal emission wrt. one more transaction. Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. "Carbon intensity of electricity generation - Ember and Energy Institute" [dataset]. Ember, "Yearly Electricity Data Europe"; Ember, "Yearly Electricity Data"; Energy Institute, "Statistical Review of World Energy" [original data]. Retrieved from https://ourworldindata.org/grapher/carbox-intensity-electricity Licenced under CC BY 4.0.

